基于视觉的控制在研究中发现了一个关键位置,以在物理传感限制下控制连续式机器人时解决状态反馈的要求。传统的视觉伺服需要特征提取和跟踪,而成像设备捕获图像,这限制了控制器的效率。我们假设采用深度学习模型和实现直接视觉伺服可以通过消除跟踪要求和控制连续内机器人而无需精确的系统模型来有效地解决问题。在本文中,我们控制了一种利用改进的VGG-16深度学习网络和掌握直接视觉伺服方法的单段肌腱驱动的连续内机器人。所提出的算法首先在搅拌机中使用目标的一个输入图像在搅拌机中开发,然后在真正的机器人上实现。由归一化目标和捕获图像之间的绝对差异和反映的正常,阴影和遮挡场景的收敛性和准确性证明了所提出的控制器的有效性和鲁棒性。
translated by 谷歌翻译
深度神经网络(DNN)已经在许多领域实现了最先进的性能。然而,DNN需要高计算时间,并且人们始终期望在较低的计算中进行更好的性能。因此,我们研究人类躯体传感系统并设计神经网络(SPINANNET),以实现更高的计算准确性,计算较少。传统NNS中的隐藏层接收前一层中的输入,应用激活函数,然后将结果传送到下一个图层。在拟议的脊柱植物中,每层分为三个分裂:1)输入分割,2)中间分割,3)输出分割。每个层的输入拆分接收到输入的一部分。每个层的中间分割接收先前层的中间分离的输出和电流层的输入分割的输出。输入权重的数量明显低于传统的DNN。 SPINANNET还可以用作DNN的完全连接或分类层,并支持传统的学习和转移学习。我们在大多数DNN中观察到具有较低计算成本的显着误差。 VGG-5网络上的传统学习具有SPINALNET分类层,为QMNIST,Kuzushiji-Mnist,EMNIST(字母,数字和平衡)数据集提供了最先进的(SOTA)性能。传统学习与Imagenet预训练的初始重量和Spinalnet分类层提供了STL-10,水果360,Bird225和CALTECH-101数据集的SOTA性能。拟议的SPINANNET的脚本可按以下链接提供:https://github.com/dipuk0506/spinalnet
translated by 谷歌翻译
With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks temporal-consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal-consistency suffers from one or more of the following drawbacks. They (1) are only suitable for a limited range of stylization techniques, (2) can only be applied in an offline fashion requiring the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks, however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that can stylize video streams while providing interactive consistency-control. Apart from stylization, our approach also supports various other image processing filters. For achieving interactive performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. We show that the final consistent video-output using our flow network is comparable to that being obtained using state-of-the-art optical-flow network. Further, we employ an adaptive combination of local and global consistent features and enable interactive selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art approaches.
translated by 谷歌翻译
Machine learning is the dominant approach to artificial intelligence, through which computers learn from data and experience. In the framework of supervised learning, for a computer to learn from data accurately and efficiently, some auxiliary information about the data distribution and target function should be provided to it through the learning model. This notion of auxiliary information relates to the concept of regularization in statistical learning theory. A common feature among real-world datasets is that data domains are multiscale and target functions are well-behaved and smooth. In this paper, we propose a learning model that exploits this multiscale data structure and discuss its statistical and computational benefits. The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings and has interpretable levels. The model apportions computational resources according to the complexity of data instances and target functions. This property can have multiple benefits, including higher inference speed and computational savings in training a model for many users or when training is interrupted. We provide a statistical analysis of the learning mechanism using multiscale entropies and show that it can yield significantly stronger guarantees than uniform convergence bounds.
translated by 谷歌翻译
Transformer language models (TLMs) are critical for most NLP tasks, but they are difficult to create for low-resource languages because of how much pretraining data they require. In this work, we investigate two techniques for training monolingual TLMs in a low-resource setting: greatly reducing TLM size, and complementing the masked language modeling objective with two linguistically rich supervised tasks (part-of-speech tagging and dependency parsing). Results from 7 diverse languages indicate that our model, MicroBERT, is able to produce marked improvements in downstream task evaluations relative to a typical monolingual TLM pretraining approach. Specifically, we find that monolingual MicroBERT models achieve gains of up to 18% for parser LAS and 11% for NER F1 compared to a multilingual baseline, mBERT, while having less than 1% of its parameter count. We conclude reducing TLM parameter count and using labeled data for pretraining low-resource TLMs can yield large quality benefits and in some cases produce models that outperform multilingual approaches.
translated by 谷歌翻译
Practical applications of mechanical metamaterials often involve solving inverse problems where the objective is to find the (multiple) microarchitectures that give rise to a given set of properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific sizes. One should, therefore, find multiple microarchitectural designs that exhibit the desired properties for a specimen with given dimensions. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture, meaning that peak stresses should be minimized as well. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, we propose a modular approach titled 'Deep-DRAM' that combines four decoupled models, including two deep learning models (DLM), a deep generative model (DGM) based on conditional variational autoencoders (CVAE), and direct finite element (FE) simulations. Deep-DRAM (deep learning for the design of random-network metamaterials) integrates these models into a unified framework capable of finding many solutions to the multi-objective inverse design problem posed here. The integrated framework first introduces the desired elastic properties to the DGM, which returns a set of candidate designs. The candidate designs, together with the target specimen dimensions are then passed to the DLM which predicts their actual elastic properties considering the specimen size. After a filtering step based on the closeness of the actual properties to the desired ones, the last step uses direct FE simulations to identify the designs with the minimum peak stresses.
translated by 谷歌翻译
Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space. We show that the resulting distributions over vocabulary tokens are intuitive and contain rich semantic information. We find that this view can explain some of the failure cases of dense retrievers. For example, the inability of models to handle tail entities can be explained via a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in out-of-domain settings.
translated by 谷歌翻译
Automatic differentiation (AD) is a technique for computing the derivative of a function represented by a program. This technique is considered as the de-facto standard for computing the differentiation in many machine learning and optimisation software tools. Despite the practicality of this technique, the performance of the differentiated programs, especially for functional languages and in the presence of vectors, is suboptimal. We present an AD system for a higher-order functional array-processing language. The core functional language underlying this system simultaneously supports both source-to-source forward-mode AD and global optimisations such as loop transformations. In combination, gradient computation with forward-mode AD can be as efficient as reverse mode, and the Jacobian matrices required for numerical algorithms such as Gauss-Newton and Levenberg-Marquardt can be efficiently computed.
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a family of graph networks inspired by mechanisms existing between nodes on a graph. In recent years there has been an increased interest in GNN and their derivatives, i.e., Graph Attention Networks (GAT), Graph Convolutional Networks (GCN), and Graph Recurrent Networks (GRN). An increase in their usability in computer vision is also observed. The number of GNN applications in this field continues to expand; it includes video analysis and understanding, action and behavior recognition, computational photography, image and video synthesis from zero or few shots, and many more. This contribution aims to collect papers published about GNN-based approaches towards computer vision. They are described and summarized from three perspectives. Firstly, we investigate the architectures of Graph Neural Networks and their derivatives used in this area to provide accurate and explainable recommendations for the ensuing investigations. As for the other aspect, we also present datasets used in these works. Finally, using graph analysis, we also examine relations between GNN-based studies in computer vision and potential sources of inspiration identified outside of this field.
translated by 谷歌翻译
Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.
translated by 谷歌翻译